PROGRAMME DE COLLES DE CHIMIE PC*1

SEMAINE N°2: 29 SEPTEMBRE AU 5 OCTOBRE

Formules de Lewis de la semaine : NH₄⁺, CO, SF₆, HCN, XeO₄, HNO₃, H₂SO₄, IF₅, XeO₂, NO₂⁺, HSO₄⁻, CCl₄ ; XeF₂, NO₂, H₂S, I₃⁻ ; XeO₃, N₂O₄, O₃.

COURS

CHAPITRE 2 : STABILITÉ DES COMPLEXES MÉTALLIQUES EN SOLUTION AQUEUSE

- I. Présentation des complexes
 - I.1 Définition et exemples
 - I.2 Denticité
 - I.3 Géométrie et stéréochimie
 - I.4 Nomenclature
 - I.5 Propriétés physico-chimiques
- II. Étude des équilibres de complexation
- → les constantes de formation/dissociation successives sont hors programme et n'ont pas été définies. Aucune question sur le sujet, ni en cours, ni en exercice
 - II.1 Grandeurs caractéristiques
 - II.1.1 Constantes de formation et de dissociation globales
 - II.1.2 Effet chélate
 - II.1.3 Diagrammes de prédominance et de distribution
 - II.1.4 Échelle de pK_d
 - II.2 Détermination de l'état final application de la méthode de la RP
- III. Interactions complexation/autres échanges de particules
 - III.1 Interaction complexation réactions acido-basiques
 - III.2 Interaction complexation réactions de précipitation
 - III.3 Interaction complexation réactions rédox
- IV. Titrages par complexation
 - IV.1 Exemple du titrage des ions calcium Ca²⁺ dans l'eau du robinet
 - IV.2 Suivi colorimétrique : choix et contraintes
- V. Application à l'étude des diagrammes E-pL

CHAPITRE 3: APPLICATION DU PREMIER PRINCIPE À LA THERMODYNAMIQUE CHIMIQUE

- I. Premier principe de la thermodynamique (rappels)
 - I.1 Énoncé du premier principe Énergie interne U
 - I.2 Travail (W ou δ W) et transfert thermique (Q ou δ Q)
 - I.3 Enthalpie H et bilans d'enthalpie
- II. Grandeurs standard
 - II.1 État standard
 - II.2 Système standard et grandeurs standard
- III. Variation d'enthalpie pour une transformation isotherme et isobare
 - III.1 Enthalpie standard de réaction
 - \rightarrow On sera toujours dans le cadre de l'approximation d'Ellingham les lois de Kirchhoff sont hors programme
 - III.2 Cas d'une transformation isotherme et isobare

- IV. Détermination des enthalpies standard de réaction
 - **IV.1 Conventions**
 - IV.1.1 État standard de référence d'un élément
 - IV.1.2 Enthalpie standard de formation d'un constituant physico-chimique
 - IV.1.3 Loi de Hess
 - IV.2 Enthalpies standard de réactions particulières
 - IV.2.1 Enthalpie (de dissociation) de liaison ou énergie de liaison
 - IV.2.2 Chaleur latente standard de changement d'état
 - → pour toute autre enthalpie de réaction mise en jeu en exercice, on donnera une définition (énergie d'ionisation, affinité électronique, énergie réticulaire, ...)
- V. Étude des systèmes en transformation adiabatique
 - V.1 Température de flamme
 - V.2 Mesure d'une enthalpie standard de réaction

CHAPITRE 4 : APPLICATION DU DEUXIÈME PRINCIPE À LA THERMODYNAMIQUE CHIMIQUE

- I. Deuxième principe de la thermodynamique (rappels)
 - I.1 Énoncé du deuxième principe Entropie S
 - I.2 Interprétation de l'entropie selon Boltzmann
 - I.3 Variation d'entropie pour un échauffement isobare
 - I.4 Identités thermodynamiques
- II. Enthalpie libre G
 - II.1 Définition de G
 - II.2 Identité thermodynamique pour G
 - → la relation de Gibbs-Helmholtz est hors-programme
- III. Potentiel chimique
 - III.1 Définition
 - III.2 Relation d'Euler
 - III.3 Variation du potentiel chimique avec T et P
 - III.4 Expression du potentiel chimique pour le corps pur
 - III.5 Expression du potentiel chimique
 - \rightarrow la notion de coefficient d'activité est hors programme ; seuls le cas des mélanges idéaux est à connaître
- IV. Applications du potentiel chimique
 - IV.1 Changement de phase du corps pur
 - IV.2 Osmose

TRAVAUX PRATIQUES

Conductimétrie

EXERCICES

Thermodynamique: chapitres 1 à 4

\to pas de calcul de ΔG ou ΔS pour le moment ; application du critère d'évolution seulement pour un équilibre de phase

Chimie des solutions PCSI (acides-bases, précipitation, diagrammes E-pH)